

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Digital Signal Processing

Time: 3 hrs.
Max. Marks: 100

Module-1

1 a. Show that the multiplication of two DFT's leads to circular convolution of the corresponding time sequences.
(08 Marks)
b. Compute the $\mathrm{N}-$ point OFT's of the signals :
i) $\mathrm{x}(\mathrm{n})=\left\{\begin{array}{ll}1, & 0 \leq \mathrm{n} \leq \mathrm{N} / 2-1 \\ 0, & \frac{\mathrm{~N}}{2} \leq \mathrm{n} \leq \mathrm{N}-1\end{array}\right.$.
ii) $x(n)=\cos \frac{2 \pi}{\mathrm{~N}} \mathrm{k}_{0} \mathrm{n}, 0 \leq \mathrm{n} \leq \mathrm{N}-1$.
(07 Marks)
c. Given $x(n)=\{1,2,3,4\}$, find $y(n)$, if $y(k)=x((k-2)) 4$.
(05 Marks)

OR

2 a. State and prove the Circular time shift property of DFT.
(06 Marks)
b. Determine the circular convolution of $\mathrm{x}_{1}(\mathrm{n})=\{1,2,3,-1\}$ and $\mathrm{x}_{2}(\mathrm{n})=\{4,3,2,-2\}$, using Time domain formula. Verify the result using Frequency domain approach.
(09 Marks)
c. For the sequence $x(n)=\{-1,2,3,0,-4,1,2,-3\}$, Calculate
i) $\sum_{k=0}^{7} \mathrm{x}(\mathrm{k})$ and
ii) $\sum_{k=0}^{7}|x(k)|^{2}$, without computing the DFT.
(05 Marks)

Module-2

3 a. Write the computational procedure to find the filtered output using Overlap Add method.
(07 Marks)
b. Find the 8 - point DFT of the sequence $x(n)=\{-1,0,2,3,-4,-2,0,5\}$, using radix -2 DIT-FFT algorithm.
(09 Marks)
c. Compare the complex additions and complex multiplications for the direct computation of DFT versus the FFT algorithm for $\mathrm{N}=128$.
(04 Marks)

OR

4 a. Derive the radix - 2 DIF - FFT algorithm and draw the signal flow graph for $\mathrm{N}=8$. Comment on the number of computations required to find $\mathrm{N}-$ point DFT.
(07 Marks)
b. Using Overlap save method, find the output of a filter whose impulse response $\mathrm{h}(\mathrm{n})=\{1,-2,3\}$ and input $\mathrm{x}(\mathrm{n})=\{2,3,-1,0,5,2,-3,1\}$. Use 6 - point circular convolution.
(09 Marks)
c. Given $X(k)=\{1, j 4,1,-j 4\}$, find $x(n)$ using radix -2 DIT - FFT algorithm.
(04 Marks)

Module-3

5
a. Design an FIR filter for the following desired frequency response

18EC52
$H_{d}(w)=\left\{\begin{array}{cc}\mathrm{e}^{-j 3 w}, & \text { if }|w| \leq \pi / 4 \\ 0, & \text { if }|w|>\pi / 4\end{array}\right.$.
Use the Hamming window function, obtain the frequency response of the designed FIR filter.
(10 Marks)
b. For the System function $\mathrm{H}(\mathrm{z})=1+2.8 \mathrm{z}^{-1}+3.4 \mathrm{z}^{-2}+1.7 \mathrm{z}^{-3}+0.4 \mathrm{z}^{-4}$. Obtain the Lattice coefficients and sketch the Lattice structure.
(10 Marks)

OR

6 a. Find the Impulse response of an FIR filter with the following desired frequency response,

$$
H_{d}(w)=\left\{\begin{array}{cll}
0 & ; & \text { if }|w| \leq \pi / 6 \\
e^{-j 4 w} & ; & \text { if }|w|>\pi / 6
\end{array}\right.
$$

Use Rectangular window function. Draw the direct form structure for the designed filter.
(10 Marks)
b. Consider an FIR Lattice filter coefficients $\mathrm{K}_{1}=0.65, \mathrm{~K}_{2}=0.5, \mathrm{~K}_{3}=0.9$. Find its impulse response and draw the direct form structure.
(10 Marks)

Module-4

7 a. Define the First order analog low pass filter prototype. How this prototype is transformed into a different filter types.
(05 Marks)
b. Design a Second order digital low pass Butterworth filter with a cutoff frequency of 3.4 kHz at a sampling frequency of 8000 Hz . Draw the direct Form - II structure of this filter. Use Bilinear transformation.
(10 Marks)
c. Discuss the general mapping properties of bilinear transformation and show the mapping between the S - plane and the the Z - plane.
(05 Marks)

OR

8 a. Define the Normalized low pass prototype function of Butterworth filter and derive the expression for the filter order.
(05 Marks)
b. Using Bilinear transformation, design a digital low pass Butterworth fitler with the following specifications : Sampling frequency : $8000 \mathrm{~Hz}, 3 \mathrm{~dB}$ attenuation at 1.5 kHz .10 dB stop band attenuation at 3 kHz .
c. Realize the following digital filter using direct Form - II

$$
\mathrm{H}(\mathrm{z})=\frac{0.7+1.4 \mathrm{z}^{-1}+0.7 \mathrm{z}^{-2}+0.5 \mathrm{z}^{-3}}{1+1.3 \mathrm{z}^{-1}+0.5 \mathrm{z}^{-2}+0.7 \mathrm{z}^{-3}+0.3 \mathrm{z}^{-4}}
$$

(05 Marks)

Module-5

9 a. With a neat diagram, explain the Harvard architecture used in DS processors.
(06 Marks)
b. Illustrate the operation of circular buffers used for address generation in DS processors.
(07 Marks)
c. Convert the following decimal numbers into the floating point representation
i) 0.640492×2^{-2}
ii) -0.638454×2^{5}.

Use 4 - bits to represent exponent and 12 - bits for mantissa.
(07 Marks)

OR

10 a. With a neat diagram, explain the basic architecture of TMS320C54X family DS processors.
b. Describe the IEEE single precision floating point format used in DS processors. ($\mathbf{(0 5}$ Marks)
c. Find the signed $\mathrm{Q}-15$ representation for the decimal number 0.560123 .
(05 Marks)

